Title
Optoelectronic Properties in Near-Infrared Colloidal Heterostructured Pyramidal “Giant” Core/Shell Quantum Dots
Document Type
Article
Publication Date
8-1-2018
Keywords
near-infrared emission, photoelectrochemical cells, pyramidal structures, quantum dots
Abstract
© 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Colloidal heterostructured quantum dots (QDs) are promising candidates for next-generation optoelectronic devices. In particular, “giant” core/shell QDs (g-QDs) can be engineered to exhibit outstanding optical properties and high chemical/photostability for the fabrication of high-performance optoelectronic devices. Here, the synthesis of heterostructured CuInSexS2−x (CISeS)/CdSeS/CdS g-QDs with pyramidal shape by using a facile two-step method is reported. The CdSeS/CdS shell is demonstrated to have a pure zinc blend phase other than typical wurtzite phase. The as-obtained heterostructured g-QDs exhibit near-infrared photoluminescence (PL) emission (≈830 nm) and very long PL lifetime (in the microsecond range). The pyramidal g-QDs exhibit a quasi-type II band structure with spatial separation of electron–hole wave function, suggesting an efficient exciton extraction and transport, which is consistent with theoretical calculations. These heterostructured g-QDs are used as light harvesters to fabricate a photoelectrochemical cell, exhibiting a saturated photocurrent density as high as ≈5.5 mA cm−2 and good stability under 1 sun illumination (AM 1.5 G, 100 mW cm−2). These results are an important step toward using heterostructured pyramidal g-QDs for prospective applications in solar technologies.
Recommended Citation
Tong, Xin; Kong, Xiang Tian; Wang, Chao; Zhou, Yufeng; Navarro-Pardo, Fabiola; Barba, David; Ma, Dongling; Sun, Shuhui; Govorov, Alexander O.; Zhao, Haiguang; Wang, Zhiming M.; and Rosei, Federico, "Optoelectronic Properties in Near-Infrared Colloidal Heterostructured Pyramidal “Giant” Core/Shell Quantum Dots" (2018). Physics & Astronomy Open Access Publications. 88.
https://ohioopen.library.ohio.edu/physics-astronomy-oapub/88