Title
Relativistic nucleon–nucleon potentials in a spin-dependent three-dimensional approach
Document Type
Article
Publication Date
12-1-2021
Abstract
The matrix elements of relativistic nucleon–nucleon (NN) potentials are calculated directly from the nonrelativistic potentials as a function of relative NN momentum vectors, without a partial wave decomposition. To this aim, the quadratic operator relation between the relativistic and nonrelativistic NN potentials is formulated in momentum-helicity basis states. It leads to a single integral equation for the two-nucleon (2N) spin-singlet state, and four coupled integral equations for two-nucleon spin-triplet states, which are solved by an iterative method. Our numerical analysis indicates that the relativistic NN potential obtained using CD-Bonn potential reproduces the deuteron binding energy and neutron-proton elastic scattering differential and total cross-sections with high accuracy.
Recommended Citation
Hadizadeh, M. R.; Radin, M.; and Nazari, F., "Relativistic nucleon–nucleon potentials in a spin-dependent three-dimensional approach" (2021). Physics & Astronomy Open Access Publications. 174.
https://ohioopen.library.ohio.edu/physics-astronomy-oapub/174