Title
Molecular design of near-infrared fluorescent Pdots for tumor targeting: Aggregation-induced emission: Versus anti-aggregation-caused quenching
Document Type
Article
Publication Date
1-1-2019
Abstract
© 2018 The Royal Society of Chemistry. Semiconducting polymer dots (Pdots) have recently emerged as a new type of ultrabright fluorescent probe that has been proved to be very useful for biomedical imaging. However, Pdots often suffer from serious fluorescence aggregation-caused quenching (ACQ) especially for near-infrared (NIR) fluorescent Pdots. This article compared two strategies to overcome the ACQ effect in near-infrared emissive Pdot systems: aggregation-induced emission (AIE) and anti-aggregation-caused quenching (anti-ACQ). The results show that the anti-ACQ platform outperforms the AIE system. The fluorescence quantum yield of anti-ACQ-based Pdots can be over 50% and the average per-particle brightness of the Pdots is about 5 times higher than that of the commercially available quantum dots. To help understand why the monomer conformations could greatly affect the optical properties of Pdots, molecular dynamics simulations were performed for the first time in such complicated Pdot systems. To demonstrate applications for in vivo fluorescence imaging, both microangiography imaging on living zebrafish embryos and specific tumor targeting on mice were performed. We anticipate that these studies will pave the way for the design of new highly fluorescent Pdot systems.
Recommended Citation
Tsai, Wei Kai; Wang, Chun I.; Liao, Chia Hsien; Yao, Chun Nien; Kuo, Tsai Jhen; Liu, Ming Ho; Hsu, Chao Ping; Lin, Shu Yi; Wu, Chang Yi; Pyle, Joseph R.; Chen, Jixin; and Chan, Yang Hsiang, "Molecular design of near-infrared fluorescent Pdots for tumor targeting: Aggregation-induced emission: Versus anti-aggregation-caused quenching" (2019). Chemistry & Biochemistry Open Access Publications. 23.
https://ohioopen.library.ohio.edu/chemistry-oapub/23