Electron Scattering in Two-Dimensional Semiconductors: Contrasting Massive Dirac and Schrödinger Behavior

Document Type


Publication Date



© 2018 American Physical Society. Electronic transport through a material depends on the response to local perturbations induced by defects or impurities in the material. The scattering processes can be described in terms of phase shifts and corresponding cross sections. The multiorbital nature of the spinor states in transition metal dichalcogenides would naturally suggest the consideration of a massive Dirac equation to describe the problem, while the parabolic dispersion of its conduction and valence bands would invite a simpler Schrödinger equation description. Here, we contrast the scattering of massive Dirac particles and Schrödinger electrons, in order to assess different asymptotic regimes (low and high Fermi energy) for each one of the electronic models and describe their regime of validity or transition. At low energies, where the dispersion is approximately parabolic, the scattering processes are dominated by low angular momentum channels, which results in nearly isotropic scattering amplitudes. On the other hand, the differential cross section at high Fermi energies exhibits clear signatures of the linear band dispersion, as the partial phase shifts approach a nonzero value. We analyze the electronic dynamics by presenting differential cross sections for both attractive and repulsive scattering centers. The dissimilar behavior between Dirac and Schrödinger carriers points to the limits and conditions over which different descriptions are required for the reliable treatment of scattering processes in these materials.