Tunable Spin-Polarized Edge Currents in Proximitized Transition Metal Dichalcogenides

Document Type


Publication Date



© 2019 American Physical Society. We explore proximity-induced ferromagnetism on transition metal dichalcogenides (TMDs), focusing on molybdenum ditelluride ribbons with zigzag edges, deposited on ferromagnetic europium oxide (EuO). A tight-binding model incorporates exchange and Rashba fields induced by proximity to EuO or similar substrates. For in-gap Fermi levels, electronic modes in the nanoribbon are localized along the edges, acting as one-dimensional (1D) conducting channels with tunable spin-polarized currents. TMDs on magnetic substrates can become very useful in spintronics, providing versatile platforms to study the proximity effects and electronic interactions in complex 1D systems.