Ohio University

OHIO Open Library

All Forum Articles

College of Arts & Sciences Forum

10-30-2015

Nance Presents Interpretation of Ophiolite Complexes: A Tweeter in Woofer's Clothing?

Ohio University College of Arts & Sciences

Follow this and additional works at: https://ohioopen.library.ohio.edu/cas_forum_all

Recommended Citation

Ohio University College of Arts & Sciences, "Nance Presents Interpretation of Ophiolite Complexes: A Tweeter in Woofer's Clothing?" (2015). *All Forum Articles*. 2006. https://ohioopen.library.ohio.edu/cas_forum_all/2006

This News Article is brought to you for free and open access by the College of Arts & Sciences Forum at OHIO Open Library. It has been accepted for inclusion in All Forum Articles by an authorized administrator of OHIO Open Library. For more information, please contact deborded@ohio.edu.

Nance Presents Interpretation of Ophiolite Complexes: A Tweeter in Woofer's Clothing?

October 30, 2015 Categories: Research

Tags: Damian Nance, Geological Sciences news

Dr. Damian Nance

<u>Dr. Damian Nance</u>, Distinguished Professor of Geological Sciences at Ohio University, presents at talk on "<u>Interpretation of Ophiolite Complexes: A Tweeter in Woofer's Clothing?</u>" at the <u>Geological Society of America annual meeting</u> Nov. 1-4 in Baltimore.

His co-presenters are Brendan Murphy, John Waldron.

Abstract: Typically, the oldest crystallization age obtained from supra-subduction zone (SSZ) ophiolites is interpreted to reflect the onset of subduction associated with convergence, possibly leading to closure of the oceanic tract in which the ophiolite was formed. But there are no adequate mechanisms to explain why SSZ ophiolites are obducted so soon after the ocean they formed in originated. For example, subduction in both the Iapetus and Rheic oceans, the two Paleozoic oceans whose closure produced the Appalachian-Caledonide-Variscan orogen, began relatively soon after their opening. Vestiges of the oceanic lithospheres of both oceans are preserved as SSZ ophiolites and related mafic complexes.

Published Sm–Nd isotopic data from these complexes indicate (i) derivation from highly depleted (HD) mantle with time-integrated depletion in Nd relative to Sm, (ii) that the extent of this depletion requires a melting event that occurred before either ocean existed, which implies (iii) that the HD mantle source was inherited from an older ocean (e.g. the Paleopacific) and captured within these Paleozoic oceans. Variation in density produced by Fe-Mg partitioning during this melting event would have rendered the older lithosphere more buoyant than the surrounding lithosphere, facilitating both its transfer from the older Paleopacific to the younger Paleozoic oceans, and the preferential development of oceanic arcs and future ophiolite complexes around this buoyant core. Such lithospheric capture is broadly analogous to the Mesozoic–Cenozoic capture of the Caribbean plate by the Atlantic realm, and may be the preferred site for oceanic arc development and ophiolite obduction. More generally, this mechanism of "plate capture" may (i) be an artifact of the geometry of supercontinent breakup, and (ii) explain the onset of subduction in an ocean soon after its formation. This analysis suggests that there is an important earlier history in many ophiolite complexes that has been previously unrecognized.