Assessing the Feasibility of Coal as an Eco-Friendly Filler in Phenolic Resin Composites: A Study of Thermal and Structural Properties

Chiderah J. Chukwuka, Sophia Almanza, Damilola A. Daramola, Ph.D.

Institute for Sustainable Energy and the Environment, Department of Chemical and Biomolecular Engineering, Ohio University.

INTRODUCTION

- Phenolic formaldehyde (PF) resins as thermoset polymers possess outstanding bonding properties, dimensional stability, and exceptional heat stability with major limitations—high brittleness and shrinkage.

- These physical properties can be enhanced with the inclusion of particulate fillers or electromagnetic materials.

- Coal, as a filler, has been used to improve both the thermal and mechanical properties of polymer materials.

- With respect to phenolic resins, the innate aromatic structure in coal suggests improved bonding is possible due to matching functionalities.

- Due to the environmental concerns associated with using coal as the primary source of energy generation, there has been a recent surge of interest in exploring alternative utilization options for coal.

OBJECTIVES

- To assess the feasibility of using coal as a filler in phenolic resins.
- This study utilizes thermal analysis techniques to understand better the curing kinetics based on coal rank and composition.
- To characterize cured coal-phenolic composites and establish a correlation with their kinetic behavior.

METHODS

- Differential Scanning Calorimetry (DSC) analysis, Perkin Elmer DSC HP 2000, Fourier Transform Infrared Spectroscopy (FTIR)
- Friedman Differential Isoconversional method
- Heat curing
- Analysis of IR Spectra
- Activation Energy values were computed at each degree of the curing stage.

SUSTAINABILITY ANALYSIS

- \[\frac{\text{Degree of Cure (\%)}^{\circ}}{\text{Temperature (\degree C)}} \]

CONCLUSION

- The increasing Ea values observed in the 60% Pmix suggest a continuous crosslinking reaction between the phenolic resin and the sub-bituminous coal rank (PRB), which could be attributed to more reactive functional end-groups present in PRB relative to the anthracite coal rank (Itmann).

- 60% Itmann exhibits a diffusion-controlled reaction owing to the decreasing Ea value trend observed.

- The IR data supports an improved interaction between the coal (regardless of rank) and the phenolic resin in the cured 60% Pmix and 60% Itmann relative to the phenolic resin (100% phenolic).

ACKNOWLEDGEMENTS

- The Russ College of Engineering and Technology at Ohio University for start-up funding
- Bakelite Synthetics for providing testing samples

REFERENCES

CONCLUSION

- The increasing Ea values observed in the 60% Pmix suggest a continuous crosslinking reaction between the phenolic resin and the sub-bituminous coal rank (PRB), which could be attributed to more reactive functional end-groups present in PRB relative to the anthracite coal rank (Itmann).

- 60% Itmann exhibits a diffusion-controlled reaction owing to the decreasing Ea value trend observed.

- The IR data supports an improved interaction between the coal (regardless of rank) and the phenolic resin in the cured 60% Pmix and 60% Itmann relative to the phenolic resin (100% phenolic).

- Further mechanical analysis and characterization techniques are necessary to uncover the specific contribution of the coal rank to the physical properties of phenolic resins composites.

- The long-term durability of phenolic-based products.
- An increased lifespan of application diversification and market demand for phenolic resins will result in enhanced properties of compatible fillers.
- The improved product performance would lead to higher sales and manufacturing demands and sales.

ACKNOWLEDGEMENTS

- The Russ College of Engineering and Technology at Ohio University for start-up funding
- Bakelite Synthetics for providing testing samples