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ABSTRACT 

We propose a four-stage plan to demonstrate the effectiveness and safety of Space 
Solar Power (SSP) for use on Earth. Our project goal is to achieve Technology 
Readiness Level (TRL) by means of: 1) a test mission in low Earth orbit using a 
small spacecraft; 2) that will support a manned mission to Mars; 3) that includes a 
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bent pipe experiment (power supplied from Earth, to a spacecraft and back to 
Earth), and 4) to complete system deployment. 

The primary impediment to SSP implementation is thought to be the acceptance 
of the system by those on Earth who may be afraid of the by-products of its use 
(e.g., radiation) or its misuse (e.g., targeting areas with high levels of radiation). 

By gaining operating experience and raising the TRL in ways that are less 
objectionable, it is believed that the Space Solar Power technology may gain 
greater acceptance for use on Earth. 

Click here to see this team video: Team Martian - Test Bed for Space Solar Power 
on Earth 

  

TECHNICAL BRIEF 

This section provides an overview of the mission and the technological 
development and testing that will be conducted. Relevant background material is 
first reviewed. 

Background  

David Hughes, who made the first radio transmission [1, 2], initiated a chain of 
events that would make space solar power possible. Important contributions were 
also made by Heinrich Hertz (who demonstrated the wave-property of radio 
transmissions and their ability to be transmitted across empty space in 1886) [3], 
and by Nikola Tesla (who suggested the use of radio for power transmission and 
was granted patents on wireless energy transfer) [4-6]. 

In the 1930s, the klystron tube [7] and microwave cavity magnetron [8] were 
developed. William Brown began work on microwave power transfer in the 1950s 
for aerial power applications [7]. Peter Glaser, in 1968, proposed space-based 
solar power and received a patent for this concept in 1973 [9, 10]. 

In the 1970s, a practical demonstration – transmitting 37 kw over a one-mile 
distance [11] – was performed and numerous studies were initiated [12-16]. The 
concept of wireless power transfer was further advanced in during the 1980’s and 
1990’s, culminating in the two microwave power transfer experiments [17, 18]. 
John Mankins performed a longer-distance test in 2008, transferring energy 148 
km [19]. More historical information on space-based solar power can be found in 
[20-22]. 

A variety of SBSP applications have been proposed including both stationary [20, 
23] and mobile aerial power applications [24] in which power is transmitted from 
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geostationary Earth orbit [9, 10] to the Earth. SSP use for lunar missions [25, 26] 
has been proposed. Additionally, the notion of building power generation 
spacecraft on the moon [27-30] has also been considered. Zidanšek, et al. [31] 
advanced the concept further: proposing to launch power generating spacecraft 
from the moon to geostationary Earth orbit.  

On the economic front, several groups [32-34] have considered the plausibility of 
creating and operating a space power utility. Macauley and Davis [35] have 
discussed transferring power from one spacecraft to another. Supplying power to 
small spacecraft [36], for human missions to Mars [37] and in support of lunar 
industries [38] has also been considered.  

Mission Concept  

A four-stage plan is proposed to demonstrate the effectiveness and safety of Space 
Solar Power for use on Earth. This plan aims to build the technology’s 
Technology Readiness Level (TRL) beginning with a test mission in low Earth 
orbit using a small spacecraft. Then the process will be demonstrated and further 
advanced through its use in supporting a manned mission to Mars. A bent pipe 
mission – where power is supplied from Earth, to a spacecraft and then sent back 
to Earth – will be conducted. Finally, in phase four, complete system deployment 
will be performed. 

It is believed that the primary impediment to system implementation is the lack of 
acceptance of the system by those on Earth who may be afraid of the by-products 
of its use (e.g., radiation) or its misuse (e.g., targeting areas with high levels of 
radiation).  

Thus, the goal of the four-phase mission is to gain operating experience and raise 
the TRL in ways that are less objectionable. Through these experiments, it is 
believed that the technology will be able to gain acceptance for more general use 
on Earth.  

Phase I 

In phase one, a simple test mission (discussed in [39]) will be performed, using a 
cost-effective small-scale experiment in low-Earth orbit. The project will be 
launched as a secondary payload. Power will be beamed from the primary satellite 
to a secondary receiving satellite that will have been deployed, in orbit, from the 
primary satellite. 

During this phase, the cybersecurity system [40, 41] for the spacecraft will be 
tested in three areas: onboard software operations, ground station software 
operations and transmission link security. A problem with either of the first two 
areas could potentially cause the power beaming system to be activated at 
incorrect times. Lack of transmission link security could cause similar problems. 

3

Straub et al.: SunSat Design Competition 2014-2015 Third Place Winner – Team Mar

Published by OHIO Open Library, 2021



Compromising any of these systems may result in the spacecraft believing that it 
is in an incorrect position or has an incorrect orientation. Mistakes in positioning 
may place the spacecraft in a state where further commands are not possible, or 
the owner/ operator’s command capabilities are denied, or a third party attacker 
may gain control. 

The proposed security system prevents communication failures when determining 
whether to send power or not. The process of determining whether to transmit or 
not is depicted in Figure 1.  

Figure 2 presents the factors that are to be considered. Note that the trust in the 
rightness of transmitting power at the proper time and the impact of failing to 
transmit are both considered. 

 

Figure 1. Thermal Power Satellite showing reflector-concentrators, support 
structures, radiators and transmitter. Not shown: boilers, frame structure, turbines 
and generators. 
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Figure 2. Expert System / Blackboard Architecture-based system for assessing 
whether to transmit power at a given (triggered) time, to a given location [40]. 

  

Phase II 

In phase two, wireless power transfer will be used to support a Mars mission. In 
this context, the generating spacecraft will supply power for base construction 
(perhaps using basalt 3D printing as discussed in [42]) as well as for operations. 
Power will be transmitted to a large array of receiving antennas in proximity to 
the main base. Power can also be beamed (at other points during the orbit) to 
support spacecraft in orbit, other outpost locations or mobile craft on the Martian 
surface. 

Phase III 

Phase three serves as an incremental step to full system deployment. While 
several scholars have proposed the use of space solar power for augmentation of 
the power grid in established areas or as a replacement to terrestrial generation 
techniques, prior work [43] has demonstrated that SSP is not yet cost justified for 
these uses.  

One application that does provide benefits not otherwise easily obtainable is the 
capability to transfer power – on-demand – into regions that are not otherwise 
served (or where the local utility is overwhelmed by rapid demand growth or an 
emergency situation). While other technologies (such as local solar or fuel-based 
generators) could prospectively solve this challenge, each has a specific limitation 
(such as daylight only generation for solar panels and the need for fuel). SSP 
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combines an environmentally friendly generation technique with the capability of 
serving remote areas.  

Under the approach taken in phase three, power is generated at one point on the 
Earth and transferred to an alternate point of need. The power is beamed using 
microwave wireless power transfer from the terrestrial generation point to an 
orbiting spacecraft and back down to the terrestrial point of use.  

Phase IV 

Exactly how SSP can be deployed in Earth orbit is an elusive question, and a 
precise answer to the eventual nature of such a system is not presumed. However, 
it is believed that more advanced work during phases one to three will enable 
eventual Earth-orbiting use. 

Use of High Frequency Transmission 

This section briefly discusses a key technical implementation decision that has 
been made for the system we have proposed; that is, to use higher electromagnetic 
frequencies (such as those proposed by Komerath [44]). This decision could 
reduce the amount of loss (and/or illuminated area) significantly. While some 
higher frequency ranges are potentially problematic, as they are blocked by the 
Earth’s atmosphere, even these could be used to support space-to-space 
operations.  

Komerath uses 220 GHz for space-to-Earth transmission, which is a frequency 
that could open a transmission window through the Earth’s atmosphere. 
Problematically, the efficiency of hardware components required for operation at 
this frequency is comparatively low, relative to the other commonly suggested 
frequencies of 2.45 GHz and 5.8 GHz. 

Komerath, Guggenheim and Flournoy [45] note that the Gyrotron is only 10% 
efficient. The prospectively more efficient (as high as 90%) Solid State MMIC is 
seen as only being at TRL 1 (as compared to the prediction of the Gyrotron being 
as high as TRL 5) as of 2013. Given the impact of high frequency radiation on 
humans [46], additional study of 220 GHz radiation exposure remains an area 
where future work is required. 

ECONOMIC DISCUSSION 

Economic considerations for each of these phases are quite different. Phase one is 
proposed as a government-funded technology advancement, including testing and 
demonstration mission. As such, no specific short-term return-on-investment is 
expected. The mission is justified by the long-term benefit that space solar power 
could provide as well as the scientific and engineering gains that could 
prospectively be attained along the way.  
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Mars Mission Benefits 

For the Mars mission, the space power demonstration does not need to 
economically justify the manned mission to Mars; such missions have been 
proposed for quite some time (e.g., [47, 48]). The incorporation of this new 
technology, however, could and should benefit the mission.  

To this end, several benefits can be identified qualitatively. First, the approach to 
be taken will avoid the entry, descent and landing costs and risk for the power 
generation system. As these costs (both in terms of dollars and mass/volume) can 
be significant [49], their elimination can facilitate lower mission cost or alternate 
use of the mass capacity. 

Second, the use of space solar power can enhance the range of robotic and human 
exploration vehicles. Due to the higher power density of the wireless transmission 
of energy. these vehicles may be able to travel further due to having lower mass 
and volume and higher power generation capabilities. Additionally, not having to 
return to base for fueling (particularly for robotic missions) could expand their 
range significantly. 

Earth Viability 

For phases three and four, the viability of the proposed system must be considered 
in the context of its use on Earth. Thus, it must be compared to terrestrial 
generation and other approaches. Prior work [43] has found that, while in the long 
term a space solar power provider may be economically viable, this is not an 
immediately plausible solution. 

McSpadden and Mankins’ work [21], while appearing more technically feasible, 
requires significant up-front investment to develop the large space (500 m 
aperture, plus generation/ transmission hardware) and ground systems (requiring 
7.5 km aperture, plus associated reception hardware). Komerath [44], on the other 
hand, proposes an approach that, while having a lower cost level, is predicated on 
advancement occurring in high frequency microwave technologies. 

For the present, reaching the target costs proposed by Macauley and Davis [35] 
does not appear plausible. Space-to-space clustering of spacecraft would appear to 
be one exception. Such an approach could be part of a user’s spacecraft 
constellation design where close proximity transmission/reception does not lend 
itself to a utility provider model.  

Small clusters of spacecraft may derive peak-power averaging benefits, but that 
would depend on the cluster’s design and operational capabilities. Clusters 
proposed may have an insufficient number of craft for this to be effective. 
Alternately, peak demand periods for cluster spacecraft may coincide, resulting in 
little power being available to share. 
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CONCLUSION 

Several areas of future work are necessary to advance the use of space solar 
power. The first will involve the development and testing of a transmitter/receiver 
pair to demonstrate the efficacy of power transmission in close proximity and 
validate the on-orbit performance of the transmission, control, cybersecurity and 
other technologies.  

The mission we have proposed will advance the TRL of some of the essential 
technologies. Additional design work on the Martian (phase two) mission is 
underway and the logistics of the (phase three) bent-pipe mission are also under 
consideration at the University of North Dakota. 
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