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Remote Sensing and Human Health: New Sensors and New Opportunities 

Louisa R. Beck, Bradley M. Lobitz, and Byron L. Wood 
California State University, Monterey Bay, California, USA NASA Ames 

Research Center, Moffett Field, California, USA 

 

Introduction 

Remote sensing data enable scientists to study the earth's biotic and abiotic 
components. These components and their changes have been mapped from space 
at several temporal and spatial scales since 1972. A small number of investigators 
in the health community have explored remotely sensed environmental factors 
that might be associated with disease-vector habitats and human transmission risk. 
However, most human health studies using remote sensing data have focused on 
data from Landsat's Multispectral Scanner (MSS) and Thematic Mapper (TM), 
the National Oceanic and Atmospheric Administration (NOAA)'s Advanced Very 
High Resolution Radiometer (AVHRR), and France's Système Pour l'Observation 
de la Terre (SPOT). In many of these studies (Table 1), remotely sensed data were 
used to derive three variables: vegetation cover, landscape structure, and water 
bodies. 

 
Click image for larger view of table 1  

International space agencies are planning an estimated 80 earth-observing 
missions in the next 15 years (29). During these missions >200 instruments will 
measure additional environmental features such as ocean color and other currently 
detectable variables, but at much higher spatial and spectral resolutions. The 
commercial sector is also planning to launch several systems in the next 5 years 
that could provide complementary data (30). These new capabilities will improve 
spectral, spatial, and temporal resolution, allowing exploration of risk factors 
previously beyond the capabilities of remote sensing. In addition, advances in 
pathogen, vector, and reservoir and host ecology have allowed assessment of a 
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greater range of environmental factors that promote disease transmission, vector 
production, and the emergence and maintenance of disease foci, as well as risk for 
human-vector contact. Advances in computer processing and in geographic 
information system and global positioning system technologies facilitate 
integration of remotely sensed environmental parameters with health data so that 
models for disease surveillance and 

In 1998, the National Aeronautics and Space Administration's (NASA) Center for 
Health Applications of Aerospace Related Technologies (CHAART) evaluated 
current and planned satellite sensor systems as a first step in enabling human 
health scientists to determine data relevant for the epidemiologic, entomologic, 
and ecologic aspects of their research, as well as developing remote sensing-based 
models of transmission risk. This article discusses the results of the evaluation 
and presents two examples of how remotely sensed data have been used in health-
related studies. The first example, a terrestrial application, illustrates how a single 
Landsat TM image was used to characterize the spatial patterns of key 
components of the Lyme disease transmission cycle in New York. The second 
example, which focuses on the coastal environment, shows how remote sensing 
data from different satellite systems can be combined to characterize and map 
environmental variables in the Bay of Bengal that are associated with the 
temporal patterns of cholera cases in Bangladesh. These examples demonstrate 
how remote sensing data acquired at various scales and spectral resolutions can be 
used to study infectious 

 

CHAART was established at Ames Research Center by NASA's Life Sciences 
Division, within the Office of Life & Microgravity Sciences & Applications, to 
make remote sensing, geographic information systems, global positioning 
systems, and computer modeling available to investigators in the human health 
community.  

 

Lyme Disease in the Northeastern United States 

During the past 10 years, NASA's Ames Research Center has been collaborating 
with the New York Medical College and the Yale School of Medicine to develop 
remote sensing-based models for mapping Lyme disease transmission risk in the 
northeastern United States (31,32). The first study compared Landsat TM data 
with canine seroprevalence rate (CSR) data summarized at the municipality level 
(31). The canine data were used as a measure of human exposure risk, the 
assumption being that dogs were more likely to acquire tick bites on or near their 
owner's property. The second study used TM data to map relative tick abundance 
on residential properties by using TM-derived indices of vegetation greenness and 
wetness (32). Figure 1 shows a subset of the TM data used in both studies, as well 
as some of the products (e.g., maps) derived from the data. Each product 
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illustrated Lyme disease transmission variables, such as vector and reservoir 
habitats, as well as human risk for disease. Figure 1a shows raw Landsat-5 TM 
data, which are recorded in six spectral bands (excluding a seventh thermal band) 
at a spatial resolution of 30 m. These data were processed to derive the products 
shown in Figures 1b-d. 

The image in Figure 1b was used to explore the relationship between forest patch 
size and deer distribution. Because white-tailed deer serve as a major host of the 
adult tick as well as its primary mode of transportation, deer distribution was a 
potentially important factor in a Lyme disease risk model. 

Figure 1c shows 12 classes used in two separate analyses of risk at two different 
scales (31). These classes include water, evergreen trees/vegetation, sparse 
deciduous trees, dense deciduous trees, clearings, golf courses (managed grass), 
urban/commercial, miscellaneous urban, residential-lawn, residential-sparse 
vegetation, residential-medium vegetation, and residential high-vegetation. In the 
first scale, the amount of remotely sensed deciduous forest was positively 
correlated (r-0.82) with canine exposure to Borrelia burgdorferi, as indicated by 
CSR data summarized by municipality. In the second analysis, a linear regression 
of the residentialhigh vegetation pixels (i.e., wood-edge) and CSR data resulted in 
a correlation coefficient of 0.84- indicating that human-host contact risk (e.g., 
deer leaving the forest to feed on residential ornamental vegetation) might be a 
good measure of human-vector contact risk. 

The image in Figure 1d was derived from the Landsat TM data by a Tasseled Cap 
Transformation (33). Tasseled Cap greenness and wetness were positively 
correlated with tick abundance on residential properties in this study area (32). 

Cholera in Bangladesh 

The second example of the use of remotely sensed data to provide information for 
health research and applications concerns cholera in Bangladesh. In this study, 
described by Lobitz et al. (34), remotely sensed datasets, downloaded from the 
Internet at no cost, were used to search for temporal patterns in the Bay of Bengal 
associated with cholera outbreaks in Bangladesh. 

Figure 2a shows a color-infrared image of the Ganges River, where it empties into 
the Bay of Bengal. These data, which were acquired by NOAA's AVHRR sensor, 
have a spatial resolution of 1.1 km. The sediment load, transported to the Bay of 
Bengal by the Ganges and Brahmaputra rivers, includes nutrients that could 
support plankton blooms. Plankton is an important marine reservoir of Vibrio 
cholerae, which attaches primarily to zooplankton, which, in turn, is associated 
with phytoplankton (35). 

In Figure 2b, the AVHRR data shown in Figure 2A were processed to show sea 
surface temperature (SST) (36). Because these data are for large-area studies, they 
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have been processed at a spatial resolution of 18 km. Figure 2c represents sea 
surface height (SSH) anomaly data derived from the TOPEX/Poseidon satellite 
(37). These data have a spatial resolution of 1 degree. Increases in SST and SSH 
have preceded cholera outbreaks in Bangladesh (34). 

 

 

Figure 1: Landsat Thematic Mapper (TM) satellite data for a 6x6-km area in 
Westchester County, New York. Shown are the raw data (a), as well as products 
(e.g., maps) derived from the data (b-d) that might be used for modeling Lyme 
disease transmission risk. a) Raw Landsat TM image composed of bands 5, 4, and 
3 (mid-infrared, near-infrared, and red bands). Vegetation is shown in shades of 
green, with bare soil and urban areas shown in shades of pink and purple. The 
spatial resolution of these data is 30x30 m. b) Map showing contiguous forest 
patches, derived from a Landsat TM classification. Colors represent discrete 
patches, with white indicating the absence of contiguous forest. c) A 12-class land 
cover map derived from the Landsat TM data. d) Composite image of three 
spectral indices derived from the Landsat TM data, showing the contributions of 
scene brightness in red, greenness in green, and wetness in blue.  
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In the next 15 years, new sensors will provide valuable data for studies of 
infectious diseases similar to the ones described here. For Lyme disease, new 
sensors could provide similar information about ecotones, human settlement 
patterns, or forests. These sensors include ARIES-1, scheduled for launch by 
Australia; CCD and IR/MSS sensors onboard CBERS, launched by China and 
Brazil in late 1999; Ikonos, a commercial satellite with 4-m spatial resolution; 
LISS III, onboard the orbiting Indian IRS-1C and -1D satellites; and ASTER, 
onboard the recently launched Terra satellite. Information from these sensors 
could also be used to address other vector-borne diseases, such as malaria, 
schistosomiasis, trypanosomiasis, and hantavirus, whose patterns are likewise 
influenced by environmental variables. 

SeaWiFS, the Sea-Viewing Wide Field-of- View Sensor, with its increased 
spectral resolution of 1.1 km, is already providing imagery critical to 
understanding the temporal and spatial pattern of cholera risk (35). This sensor 
was specifically designed to gather information about ocean color (38) (Figure 
2d). 

Sensor Evaluation Project 

CHAART evaluated data from current and planned satellite instruments for 
mapping, surveillance, prediction, and control of human disease transmission 
activities, including vector ecology, reservoir and host ecology, and human 
settlement patterns. From hundreds of potential sensors, 54 were identified that 
were current (or would be launched within the next 5 years), operational (not 
reserved for the scientific community), and digital (not photographic). 

Beginning in 1985, NASA has held a series of workshops to elicit input from the 
health community on the use of remote sensing in the areas of entomology, 
ecology, epidemiology, vector control, and infectious diseases. In addition, NASA 
has participated in sessions on remote sensing and health at professional meetings 
sponsored by national and international health organizations. On the basis of this 
experience as well as a review of the scientific literature (Table 1), there does not 
appear to be consensus in the health community regarding requirements for a 
remote sensing system. Some investigators use remotely sensed data to resolve 
questions regarding the relationship between an aspect of disease transmission 
and an environmental variable. Other researchers already have a model of disease 
transmission and have specific spatial, temporal, or spectral requirements for the 
remotely sensed variables. 

 

The information gathered during the CHAART sensor evaluation process is 
available at http://geo.arc.nasa.gov/sge/health/sensor/sensor.html.  

 

5

Beck et al.: Remote Sensing and Human Health: New Sensors and New Opportunitie

Published by OHIO Open Library,

http://geo.arc.nasa.gov/sge/health/sensor/sensor.html


No single spatial, temporal, or spectral resolution is universally appropriate for 
understanding the transmission risk for any disease, given the variety of vectors, 
reservoirs, hosts, geographic locations, and environmental variables associated 
with that disease. Therefore, in evaluating the existing sensors, CHAART used an 
approach that allowed individual investigators to identify satellite data appropriate 
for their own needs. This approach defined 16 groups of physical factors that 
could be used for both research and applications. Each factor is essentially an 
environmental variable that might have a direct or indirect bearing on the survival 
of pathogens, vectors, reservoirs, and hosts. These factors may also affect many 
types of non-vectorborne diseases, such as waterborne diseases. The factors are 
vegetation or crop type, vegetation green-up, ecotones, deforestation, forest 
patches, flooded forests, general flooding, permanent water, wetlands, soil 
moisture, canals, human settlements, urban features, ocean color, SST, and SSH. 
Precipitation, humidity, and surface temperature were not included because 
deriving these measurements from raw data requires highly specialized processing 
and calibration, routinely performed by qualified groups who often make the 
information available on Internet websites. 

 

 

Figure 2: Datasets used to model the temporal patterns of cholera outbreaks in 
Bangladesh. a) Advanced Very High Resolution Radiometer (AVHRR) satellite 
image showing the mouth of the Ganges River and the Bay of Bengal. Vegetation 
is shown in shades of red and water in shades of blue. The spatial resolution of 
these data is 1.1 km. b) Sea surface temperature data, derived from AVHRR 
thermal bands. Temperatures range from low (purple) to high (red). c) Sea surface 
height data, derived from TOPEX/Poseidon satellite data. The spatial resolution 

6

Online Journal of Space Communication, Vol. 8, Iss. 14 [], Art. 14

https://ohioopen.library.ohio.edu/spacejournal/vol8/iss14/14



of these data is 1 degree. d) Image derived from the Sea-Viewing Wide Field-of-
View Sensor (SeaWiFS) showing chlorophyll concentration, ranging from low 
(blue) to high (red). These satellite data have a nominal spatial resolution of 1.1 
km.  

 

The sensor evaluation project generated a series of tables that associated each of 
the 16 factors with the 54 sensors according to spatial, temporal, and spectral 
characteristics. For example, factors requiring frequent monitoring, such as 
vegetation green-up, are linked with sensors with shorter repeat overpasses. 
Similarly, factors requiring very high spatial resolution, such as mapping urban 
features, are linked with sensors having a spatial resolution of 10 m or less, 
regardless of their temporal or spectral resolutions. 

Perhaps the broadest use of Landsat and SPOT data has been to identify and map 
vegetation or crop types. This factor is important because the distribution of 
vegetation types integrates the combined impact of rainfall, temperature, 
humidity, topographic effects, soil, water availability, and human activities. 
Nearly all vector-borne diseases are linked to the vegetated environment during 
some aspect of their transmission cycle; in many cases, this vegetation can be 
sensed remotely from space. The spatial and temporal distribution of vector or 
reservoir and host species may relate to the occurrence and distribution of specific 
vegetation or crop types, not simply to whether an area has forests or grasslands. 
For example, food and cover preferences of the white-tailed deer, the host for 
adult ticks that transmit Lyme disease in the northeastern United States, might 
well encourage deer to live near certain types of forest. Crop-type information 
may also be important for studying the effects of pesticides (e.g., vector 
resistance; illnesses caused by exposure to toxins). The sensor evaluation 
procedure has identified many potentially useful sensors for mapping vegetation 
and crop type beyond the Landsat and SPOT systems (Table 2). A ground 
resolution threshold of 30 m was used as the upper limit for exploring the 
relationship between vegetation (or crop) type and disease vectors, reservoirs, and 
hosts; above 30 m, vegetation and crop type are more difficult to ascertain. Many 
of the sensors could also be used for mapping the boundary between vegetation 
types, or ecotones, which provide habitat for insects and animals critical to the 
maintenance and transmission of vectorborne diseases. These edges may be areas 
for increased risk for vector-human contact, as indicated by the relationship 
between Lyme disease transmission and suburban encroachment into forested 
areas in the northeastern United States. The movement of humans into forested 
edges where potential vectors are established could also be important for 
predicting malaria or yellow fever transmission. 
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Click image for larger view table 2  

The list of 16 factors used in the CHAART evaluation includes some that have 
not yet been quantified because available sensors do not provide adequate spatial, 
spectral, or temporal resolutions. Two of these factors are briefly described below 
to illustrate how remotely sensed data might be used to explore their potential 
links to human health. More links between the factors and various diseases are 
listed in Table 3. 

 
Click image for larger view table 3  

Urban Features 

The detection of urban features requires higher spatial resolution systems than 
needed for detecting the presence of human settlements. Some disease vectors are 
associated with specific urban features such as housing type, which can only be 
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detected by sensors with very high spatial resolution. In the future, new sensors 
may be able to provide information on the urban environment (Table 4). 

 

Soil Moisture 

Wet soils indicate a suitable habitat for species of snails, mosquito larvae, ticks, 
and worms. Several types of sensors can detect soil moisture, including synthetic 
aperture radars (SARs), shortwave-infrared, and thermal-infrared sensors (Table 
5). SARs are particularly important for sensing ground conditions in areas of 
cloud cover or vegetation canopy cover, two factors commonly found in the 
tropics. 

 
Click image for larger view table 5  

Conclusions 
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The extent to which remotely sensed data are used for studying the spatial and 
temporal patterns of disease depends on a number of obstacles and opportunities. 
Many of the obstacles-including cost, inadequate spatial, spectral, or temporal 
resolutions, and long turnaround times for products-have restricted the use of 
remote sensing within the user community as a whole. Many of these barriers will 
be addressed by new sensor systems in the next 5 years. The recently launched 
Landsat-7 ETM+ sensor, for example, is now providing 30- m multispectral data, 
a 15-m panchromatic band, and an improved 60-m thermal infrared band, all at a 
cost that is an order of magnitude  

With the higher spatial and spectral resolutions, more frequent coverage, lower 
price, and increased availability offered by the range of new sensors, human 
health investigators should be able to extract many more environmental variables 
than previously realized. These improvements will provide new opportunities to 
extend the uses of remote sensing technology beyond a few vector-borne diseases 
to studies of water- and soil-borne diseases (for example, cholera and 
schistosomiasis [waterborne] and the helminthiases) and the mapping of human 
settlements at risk. The next generation of earthobserving remote sensing systems 
will also allow investigators in the human health community to characterize an 
increasing range of variables key to understanding the spatial and temporal 
patterns of disease transmission risk. These improved capabilities, when 
combined with the increased computing power and spatial modeling capabilities 
of geographic information systems, should extend remote sensing into operational 
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