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More than 30 years ago, human beings looked back from the Moon to see the 
magnificent spectacle of Earthrise. The technology that put us into space has since 
been used to assess the damage we are doing to our natural environment and is 
now being harnessed to monitor and predict diseases through space and time. 
Satellite sensor data promise the development of early-warning systems for 
diseases such as malaria, which kills between 1 and 2 million people each year. 

1. Introduction 

Malaria caused by Plasmodium falciparum parasites exacts its greatest toll in sub- 
Saharan Africa, where it is one of the largest causes of morbidity and mortality, 
creating a significant barrier to economic development. Furthermore, this public 
health burden is increasing globally,[1] exacerbated by failure of existing 
affordable drugs, population growth against declining per capita expenditure on 
health, human migration and poverty. As a step towards reversing this trend, there 
is growing interest in the mapping and predictive modelling of the geographical 
limits, intensity and dynamics of the risk of malaria infection, using new tools of 
surveillance. An unprecedented amount of information on environmental 
conditions, remotely sensed by satellite sensors, is now available at temporal and 
spatial resolutions to match our epidemiological questions. 

Here we show how these tools are used to investigate the factors that drive the 
dynamics of vector populations and malaria parasite transmission. Because 
mosquito population processes and malaria incubation periods in vectors, for 
example, vary with temperature and moisture conditions on the ground, remotely 
sensed images of seasonal climate are powerful predictors of mosquito 
distribution patterns and average levels of transmission of malaria parasites by 
these vectors. Patterns of infection vary through time owing to extrinsic (for 
example, climate) and intrinsic (for example, immunity) effects. The balance of 
these factors depends upon the levels of malaria transmission in each place and 
will change over time with resistance to control of parasites and vectors. Early-
warning systems, therefore, will require models that incorporate both intrinsic and 
extrinsic factors. 
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2. Extrinsic and Intrinsic Drivers of Malaria 

Diseases caused by vector-borne pathogens vary in magnitude through space and 
time much more than directly transmitted pathogens, because their innate capacity 
to increase is usually much higher. This is expressed as the basic reproductive 
number R0: 

 

R0=ma2bce-mT/µr 

 

where m is the vector-host ratio; a is the vector biting rate; b,c are transmission 
coefficients from vertebrate to vector and vice versa; µ is the vector mortality 
rate; T is the extrinsic incubation period of the parasite in the vector; and r is the 
rate of recovery in the vertebrate. Values of R0 for vector-borne pathogens reach 
hundreds, or even thousands, compared with a typical value of <10 for directly 
transmitted pathogens.[2] Changes in R0 are most sensitive to changes in variables 
that appear as powers or exponents (a, µ and T).[3][4] 

R0 is reduced to RE, the effective reproductive number that approximates to 1.0 at 
equilibrium, by population acquired immunity and other processes that either 
limit vertebrate infectivity for mosquitoes or decrease coefficients of transmission 
between vertebrates and vectors. Thus, although the increase of vector-borne 
pathogens is most strongly influenced by the six (out of seven) vectorrelated 
factors in the R0 equation, their regulation is effected principally by vertebrate 
factors. However, because acquired vertebrate immunity depends upon the level 
and frequency of exposure to parasites since birth, it should be possible to define 
the dynamics of many vector-borne pathogens solely on the basis of the current 
and previous history of the vector population. 

Although invertebrate vectors are strongly influenced by variable climate (that is, 
abiotic or extrinsic factors),[5] vertebrate host immunity effects (biotic or intrinsic 
factors) can produce characteristic cycles of infection even in the absence of 
variation in environmental conditions.[6] The interaction of extrinsic and intrinsic 
factors results in the characteristic waxing and waning of many vector-borne 
infections, on timescales from weeks to decades;[7][8] these cycles may be 
suppressed, but are rarely totally eliminated, by control and intervention efforts. 
Early attempts to predict malaria outbreaks in India and Pakistan revealed an 
understanding of this interaction:[9] a combination of the absence of malaria in 
the preceding 5 years, rainfall anomalies from July to August, and the local prices 
of wheat (thought to reflect the nutritional state of the human population) was 
used to predict the amount and distribution of malaria in 1921 with 'considerable 
precision.'[10] This early promise of accurate forecasting of malaria outbreaks 
was implemented successfully in the subcontinent for almost 25 years[11] until 
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the introduction of insecticides and cheap drugs in the 1950s and 1960s, when 
forecasting was no longer felt necessary.[12] There have been no effective early-
warning systems for malaria, or indeed for any vectorborne diseases, since that 
time.[13]  

3. New Prospects for Malaria Early-Warning Systems 

With a breakdown in effectiveness of the 'cures' found for malaria in the 1950s 
and 1960s, there has been a global resurgence of malaria1,[14][15] and renewed 
interest in the concept of malaria early warning.[13][16][17] But instead of rain 
gauges and wheat prices, we now have an armoury of information on 
environmental conditions, remotely sensed from satellite sensors, that has been 
related to the dynamics of vector populations and pathogen transmission.[18][19] 
Until we can dissect quantitatively the roles played by extrinsic and intrinsic 
factors, however, we cannot use these new tools to forecast outbreaks. First, 
therefore, we focus on what satellite imagery can tell us about the environmental 
prerequisites for malaria transmission in the equilibrium situation. 

3.1 The Risk-Challenge Relationship for Malaria 

The hypothetical relationship between the challenge presented to the human 
population by a vector population and the resulting incidence or prevalence of 
infection, each assuming stable conditions, is complex and nonlinear (Fig. 1). The 
humped curve is determined by interactions between transmission rates, the rate 
of development and duration of temporary acquired immunity in the vertebrate 
host population, and the age structure of the latter. But the precise shape of the 
relation, and its implications for malaria control, are controversial,[20][21] not 
least because of a shortage of good quality field data available for its 
determination. (The relationship between clinical disease and challenge may be 
different from that shown in Fig. 1, most obviously in areas of high challenge.) 
The data that do exist for Africa, now being gathered together in the ambitious 
Mapping Malaria Risk in Africa/Atlas du Risque de Malaria en Afrique 
collaboration,[22][23] may nevertheless be used first to examine the 'challenge' 
axis of Fig. 1. 
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Figure 1: Hypothetical relationship between the challenge to a host population by a vector-borne 
pathogen and the risk of the host becoming infected. Challenge is a function of many elements of the 
vector's biology; risk is often modulated by host resistance and/or acquired immunity. Fixed age-
specific prevalences at each level of challenge with different levels of vertebrate host mortality rate (m 
in the figure) produce population prevalence/challenge curves of different overall shapes.  

3.2 Distribution and Abundance of Mosquito Vectors 

The distribution of efficiently transmitted pathogens such as those that cause 
malaria is generally limited by the distribution of competent vectors, which can 
now be predicted from satellite imagery. In Africa, the main vectors of malaria 
include species of the Anopheles gambiae complex (A. arabiensis, A. bwambae, 
A. gambiae s.s., A. melas, A. merus and A. quadriannulatus) and A. funestus, 
whose distributions show similarities with patterns of annual rainfall across 
Africa.[24] Furthermore, a relationship found in West Africa between climate 
(annual precipitation and annual and wet-season temperatures) and the ratio of A. 
gambiae s.s. to A. arabiensis was used successfully to predict the distribution and 
relative abundance of these two species in Tanzania (East Africa).[25] The 
subtlety and extensive coverage of multivariate climatic factors detectable by 
satellite sensors have allowed predictions of the distribution of five of the six 
species in this complex (Fig. 2; A. bwambae, restricted to a small site in Uganda, 
is not modelled). This has been achieved using maximum likelihood methods 
based on the relatively few studies that identified these species separately. Thus, 
satellites can distinguish between the habitats of species that were, until 1956, 
regarded as a single species. 

Satellite data show strong relationships with the density of other vectors in 
Africa,[2][26] but mosquito abundance has only rarely been recorded, despite its 
importance in R0 calculations. Until such data are collected, as a matter of 
urgency, we speculate that abundance will be greatest in sites with conditions near 
to the climatic centroids defined by the satellite data, although spatially variable, 
densitydependent factors may confound this prediction. 

 

Figure 2: Distributions of five mosquito species in the Anopheles gambiae complex in Africa, predicted 
from temporal Fourier-processed satellite data (Box 1 on page 4) and elevation (global coverage 

4

Online Journal of Space Communication, Vol. 8, Iss. 14 [], Art. 11

https://ohioopen.library.ohio.edu/spacejournal/vol8/iss14/11

https://spacejournal.ohio.edu/issue14/research_malaria4.html


provided by the digital elevation model GTOPO30; 
http://eros.usgs.gov/products/elevation/gtopo30.php) at a spatial resolution of 0.05°. The colour-coded 
probabilities42 of presence effectively indicate the environmental suitability for each species 
throughout the continent. Symbols indicate sample sites for each species. Between 18° N to 30° S, each 
species was classed as present only within 0.15° of the sites from which it has been recorded[24] and 
absent only from similarly sized sites where any of the other species have been recorded. Within these 
sites, presence pixels (300 for A. gambiae s.s. and A. arabiensis and 100 for the other species) and 
absence pixels (400 for all species) were chosen at random; additional randomly selected absence pixels 
were chosen north of 18° N (n=200) and south of 30° S (n=50). Satellite data: middle infrared, land 
surface temperature and normalized difference vegetation index for 1982-1998 were derived from the 
National Oceanographic and Atmospheric Administration's Advanced Very High Resolution 
Radiometer, and cold cloud duration for 1988-1999 from Meteosat High Resolution Radiometer. 
Satellite and elevation data for all sample pixels were subjected to k-means clustering within the 
Statistics Package for the Social Sciences (SPSS, Chicago) to identify up to six natural clusters each of 
presence and absence pixels for each mosquito species. Within maximum likelihood discriminant 
analysis, stepwise selection of up to ten variables was applied to maximize predictive accuracy 
according to the kappa statistic,[28] sensitivity and specificity (Box 1 on page 4) and to calculate the 
posterior probabilities[42] with which each pixel belongs to the presence or absence classes within the 
training set. Sites too different from any of the training set sites are assigned to a 'no prediction' class.  

 

a, A. arabiensis: 86.0% correct predictions, 7.7% false positives, 6.2% false negatives, 
sensitivity=40.80, specificity=40.89, κ=40.679 (±50.051 95% confidence interval).  
 
b, A. gambiae s.s.: 92.4% correct, 4.2% false positives, 3.4% false negatives, sensitivity=40.89, 
specificity=40.94, κ=40.826 (±50.039).  
 
c, A. quadriannulatus: 99.1% correct, 0.9% false positives, 0% false negatives, sensitivity=41, 
specificity=40.99, κ=40.961 (±50.029).  
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d, A. melas (West Africa): 98.2% correct, 1.6% false positives, 0.1% false negatives, sensitivity=40.99, 
specificity=40.98, κ=40.928 (±50.039); and A. merus (East Africa): 98.4% correct, 1.6% false positives, 
0% false negatives, sensitivity=41, specificity=40.98, κ=40.933 (±50.037).  

 
3.3 Entomological Inoculation Rate 

A more complete measure of malaria challenge is an estimate of the 
entomological inoculation rate (EIR), which is the product of the number of 
mosquito bites per human per unit time (ma in the R0 equation) and the proportion 
of mosquitoes with sporozoites (infective stages of the malaria parasites).[3] EIRs 
are generally derived from short- to medium-term studies, each in a relatively 
small area, and are therefore of limited predictive value on their own.[27] By 
compiling all reliable published EIRs and relating them to satellite data, we can 
make more extensive predictions of this measure of challenge (Fig. 3). Analysis 
shows that gradual changes in environmental conditions distinguish low- and 
high-risk areas, and do so consistently enough for an excellent overall agreement 
with the field data (kappa statistic (ref. 28; and see Box 1 on page 4) of 0.77). 
There is also good agreement between the EIR predictions (Fig. 3) and the 
predicted distributions of the two key malaria vectors, A. arabiensis and A. 
gambiae s.s. (Fig. 2), although in parts of southern Africa, where historically 
vector control and case-management have been effective, present-day malaria 
challenge is less than is shown on this map. But many areas of Africa are too 
different from any of the training sets to allow any predictions for them (shown in 
grey in Fig. 3). By identifying these regions, satellite imagery can direct new 
studies of this important malariometric index. 

 

Figure 3: Satellite-derived predictions of entomological inoculation rate (EIR) in Africa. EIR data27 
(map inset) were grouped into five approximately equal-sized classes of mean levels of malaria 
challenge. The same satellite data layers and analytical methods as used in Fig. 2 are used to define the 
probability with which each continental pixel belongs to one of the five challenge categories. 
Insufficient training data were available to define EIR in those parts of the continent marked grey.  
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Descriptive accuracies: EIR range 0-4.4, 85.7% (n=21); 5.8-26.6, 81.8% (n=22); 31.0-87.0, 77.3% 
(n=22); 89.8-255.5, 68.2% (n=22), 259.9-703.4, 95.5% (n=22). Overall κ=40.771 (±50.064).  

 
3.4 Resulting Malaria Incidence and Prevalence 

Biologically, and for the purposes of intervention, the point of interest is to 
explain the relationship between the above three measures of challenge (mosquito 
distribution and abundance, and EIR) and the resulting disease burdens, and so be 
able to predict the latter. We are hindered from making even statistical predictions 
by the lack of good quality training sets for satellite studies, as disease risks have 
been determined too infrequently, and over insufficiently wide areas. With the aid 
of satellites, however, a small training set can produce predictions across a large 
area. 

Numbers of monthly childhood malaria admissions in three hospitals in Kenya, 
expressed as a percentage of the annual totals, were found to be correlated most 
consistently (mean adjusted r2=40.71) with the previous month's normalized 
difference vegetation index (NDVI), (Box 1 on page 4)[29], which is related to 
plant photosynthetic activity. As minimum NDVIs of 0.35-0.40 were shown to be 
required before >5% of annual admissions were recorded in any one month, the 
duration of malaria transmission seasons across Kenya and Uganda could be 
predicted by counting the number of months in which these NDVI values were 
exceeded.[18][30] The resulting predictive maps of malaria seasons showed 
strong similarities to an historical map of malaria transmission periods in 
Kenya.[31] 
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4. Non-Equilibrium Situations 

4.1 Seasonality and Intrinsic Dynamics 

The position of any site on the horizontal axis of Fig. 1 determines average 
malaria risk, but seasonal changes in the challenge variables (mosquito abundance 
and EIR) cause seasonal changes in risk that may be either very pronounced (such 
as is characteristic of conditions of low average challenge) or strongly buffered by 
herd immunity responses (at high challenges). At low challenge levels, and 
because of time delays between the index of challenge and its expression as 
malaria infections, the risk-challenge relationship will trace an anticlockwise 
ellipse over time, completing approximately one cycle per year. Remotely sensed 
data that monitor one or more measure of challenge will therefore be able to 
predict risk with an appropriate lead time. 

In high challenge areas this simple picture is obscured by the longer-term effects 
of intrinsic disease dynamics, which tend to be uncoupled from the annual 
seasonality in a way that makes prediction much less accurate. Intrinsic dynamics 
can produce cycles of disease prevalence in human populations with periods of a 
few to many years. A recent analysis of long-term records of two mosquitoborne 
diseases, dengue in Thailand and malaria in Kenya, shows clear evidence of such 
cycles, with periods in each case of about 3 years.[32] The absence of any sign of 
equivalent multi-annual cycles in the contemporary meteorological records at 
each site supports the interpretation that these cycles are driven by intrinsic biotic 
factors such as host acquired immunity. 

The transition from low levels of endemicity, where variation in malaria incidence 
is apparently driven by extrinsic factors, to higher levels of endemicity, where 
intrinsic dynamics overrides annual seasonality, may be abrupt (D.J.R., 
unpublished data). This transition may occur with only modest increases in 
average mosquito abundance. Above a certain level of endemicity the resulting 
multi-annual cycles of infection are neither simply, nor easily, linked to either 
meteorological or satellite data. 

4.2 Short- and Long-Term Cycles in Weather Patterns 

Longer-term weather cycles such as the El Niño/Southern Oscillation (ENSO) in 
the Pacific Ocean have been invoked recently to 'explain' outbreaks of malaria 
and other diseases.[33] Some of these analyses are not statistically robust, while 
none of them allows an alternative explanation involving intrinsic cycles. This 
problem is particularly acute because within the past 30-40 years the 
quasiperiodic ENSO signal has shown a gradual increase in frequency and now 
has a periodicity of approximately four years.[34] This is close enough to the 
intrinsic cycles revealed for dengue in Thailand and malaria in Kenya for a casual 
analysis to suggest a causal link between the two. Before any disease periodicity 
can be attributed with any certainty to ENSO, a link must be established between 
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the global ENSO index and local weather records (measured directly or remotely) 
pertinent to the particular vector-borne pathogen. 

4.3 Trends and Global Change 

The disparity in conclusions about the likely impact of global climate change on 
malaria distribution in the future [35][36] highlights the significant gaps in our 
knowledge of this most important tropical disease. Attempts to relate past trends 
in malaria prevalence to climate records[37] are the critical tests of the real role of 
climate in the recent history of malaria and therefore its likely impact in the 
future. Statistical analyses of time series usually require stationarity (the property 
of constant mean and variance through a series), which is generally achieved by 
calculating the difference from the overall trend line of each sequential 
observation. Often, however, it is the trend itself which is of interest and 
importance. 

Windowed Fourier analysis (Box 1 on page 4) of long-term (1966-1998) monthly 
malaria data from Kericho, Kenya[32][38] shows that the amplitude of many of 
the component Fourier harmonics has increased over this period; this is most 
marked in cycles with periods of one and about three years (Fig. 4). Similar 
analyses of contemporary temperature and rainfall records show no equivalent 
changes (Fig. 4); rather, if anything there has been a decrease in the amplitude of 
the same Fourier harmonics. The most parsimonious interpretation of these results 
is that following a period of aggressive and wide-spread use of chloroquine for 
fever management, and for some periods as prophylaxis, this drug became less 
effective at parasite clearance during the mid-late 1980s. Malaria no longer 
suppressed by the drugs began to show higher-amplitude extrinsic and intrinsic 
cycles, coupled, respectively, to annual seasonal variation and infection-recovery-
immunity effects. 

Where climate change is accompanied by changing abundance of mosquitoes, its 
impact on the levels and periodicity of malaria outbreaks will be far more 
complex than modelled so far. Although remotely sensed images of seasonal 
environments can set the scene for long-term studies of disease, such data must be 
combined with contemporary field data and dynamic models of disease 
transmission for a full explanation of vector-borne diseases in an ever-changing 
world. 

 

Figure 4: Amplitude of Fourier harmonics derived from windowed Fourier analysis of malaria cases per 
month and a range of climatic variables for the period January 1966 to December 1998.  
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a, Malaria cases per month; 
b, temperature (°C); 
c, rainfall (mm); data (from ref. 38) from Kericho, Kenya. 
d, Data from the Multivariate El Niño/ Southern Oscillation (ENSO) Index[43][44] ( 
http://www.cdc.noaa.gov/people/klaus.wolter/MEI/).  
 
All data were first de-trended with a 60-point moving average, and the analysis was based upon the 
difference of the raw data from this trend line. Beginning in 1966, a 12-year window was moved 
forward one year at a time until 1998 was included. The rapid increase in the amplitudes of the 1-year 
(red line) and ˜3-year (blue line) harmonics of the malaria data have no obvious parallels in the 
temperature, rainfall or ENSO records, suggesting that these changes are not driven by any element of 
climate change. The green lines show the results for all other harmonics with periods of between 1 and 
12 years.  

 
5. Future Perspectives 

Statistical models relating various components of the transmission of malaria 
parasites to satellite data demonstrate clearly the potential role and importance of 
remotely sensed imagery to descriptions, explanations and predictions of vector-
borne disease. In the face of a world changing in both abiotic and biotic respects, 
and complex infection and disease dynamics that are not amenable to simple 
statistical interpretations, we must now take the next step -- the incorporation of 
satellite data into biological models of pathogen transmission. Studies have 
already related vector mortality rates and abundance to satellite data,[39] and 
biological models have been developed for a few vectors[40][41] and vector-
borne pathogens.[26] 

Extensive satellite coverage coupled with vector-borne pathogen models that are 
appropriate at a local scale will enable us to build spatially rich, accurate models 
of vector-borne pathogens. If we can understand transmission dynamics well 
enough to model the present, we should be able to develop accurate disease early-
warning systems in the future. It is clear that the technologies we now have to 
study these diseases are far better than those available to malariologists in the 
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early years of the last century. The challenge is to make the science of malaria 
prediction at least as good. 

Box 1: Satellite Sensors for Monitoring Diseases 

Satellite sensor designs are rarely ideal for epidemiological studies because of 
trade-offs between spectral, spatial and temporal resolution, determined by 
constraints of the Earth's atmosphere, or the original requirements of 
commissioning agencies. Passive satellite sensor data (that is, reflections or 
emissions arising ultimately from the Sun) have been used most commonly for 
epidemiological studies, and are discussed here, but there is increasing interest in 
radar satellites with active sensors that can produce images even under cloudy 
conditions. 

Spectral Resolution 

Satellite sensors detect reflected sunlight or infrared radiation emitted by all 
bodies above absolute zero. Data are most readily available in three to seven 
wavebands or channels in the humanvisible and near-to-thermal infrared part of 
the electromagnetic spectrum (0.3-14-µm wavelengths). 

Spatial Resolution 

Earth-observing satellites produce data with spatial resolutions of 1-4 m (Ikonos-
2), 10-20 m (Satellite pour l'Observation de la Terre; SPOT), 30-120 m (Landsats 
1-5) or 15-60 m (Landsat 7). Images, made up of picture elements or 'pixels' of 
these sizes, have swath widths of ˜11 km (Ikonos), ˜60 km (SPOT) and 185 km 
(Landsat). The 'vegetation instrument' on SPOT-4 has a spatial resolution of 1 km 
and a 2,250-km swath width. 

Meteorological satellites have lower spatial resolutions, with pixel sizes down to 
1.1 km (National Oceanographic and Atmospheric Administration Advanced 
Very High Resolution Radiometer; NOAAAVHRR), and a correspondingly wider 
swath width of ˜2,400 km. Geostationary satellites maintain a constant position 
relative to the Earth, giving spatial resolutions of 1-8 km (Geostationary 
Operational Environmental Satellite for the Americas) or 2.5-5 km (Meteosat 4-6 
for Europe/Africa) and images of the entire Earth halfdisk. 

Temporal Resolution 

Satellites with a higher spatial resolution have a repeat frequency of 11 (Ikonos), 
16 (Landsat) or 26 (SPOT) days. Orbiting meteorological satellites produce two 
images per day of the entire Earth's surface, whereas geostationary satellites 
produce two images per hour to monitor weather systems. 

New Satellites and Sensors 
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New systems promise greater spectral and spatial resolutions, and greater signal 
stability over time. These include the Moderate Resolution Imaging Spectrometer 
on the Terra spacecraft (http://terra.nasa.gov), and the Spinning Enhanced Visible 
and Infrared Imager on the geostationary Meteosat Second Generation 
(http://www.esa.int). 

Images for Epidemiology 

Imagery is adversely affected by atmospheric contamination such as clouds and 
other aerosols. The low repeat frequency of the higher spatial resolution satellites 
prevents the recording of important seasonal determinants of pathogen 
transmission rates. In contrast, frequent images from NOAA-AVHRR and 
Meteosat sensors can be combined to produce relatively cloud-free monthly 
images generated from the maximum values of each signal recorded during the 
period (assumed to reflect cloud-free conditions), called maximum value 
composites.[18] These are of much greater use in studying dynamical 
epidemiological processes. 

Data from each satellite channel may be used directly to describe epidemiological 
events, or may be processed to produce indices related to ground-based variables 
such as soil surface temperatures. Commonly used products include the middle 
infrared band, derived from AVHRR channel 3, and land surface temperature 
(LST), derived from AVHRR channels 4 and 5, both of which are related to the 
Earth's surface temperature; the normalized difference vegetation index, derived 
from AVHRR channels 1 and 2 and related to plant photosynthetic activity; near-
surface air temperature, derived from LST and vegetation index measurements; 
and cold cloud duration from Meteosat, which is correlated with rainfall in 
convective precipitation systems (all reviewed in refs 18, 45). 

Data Processing and Application 

Monthly composited imagery often shows strong serial correlations, and therefore 
data redundancy, which may be overcome in two ways. The data may be 
subjected either to principal components analysis (PCA) and the resultant 
significant principal components used in further analyses, or to temporal Fourier 
analysis that describes natural cycles in terms of annual, bi-annual, tri-annual, and 
so on, components with longer or shorter periods. Temporal Fourier processing 
removes data redundancy and produces a set of orthogonal (uncorrelated) outputs 
while retaining a description of seasonality (which is lost in PCA); this is of vital 
interest in epidemiology.[26][46][47] Windowed Fourier analysis overcomes the 
problem of serial changes in the mean and variance of the data. Trends are first 
removed by taking the difference of the time series from a moving average 
spanning a number of annual cycles, and this de-trended time series is then 
Fourier-analysed. To deal with changing variances, a fixed aperture window is 
moved progressively over the de-trended time series, and only the data within the 
window are analysed. By comparing such analyses across the entire time series, 
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the periodicities contributing most to changes in the overall variance can be 
identified (Fig. 4 on page 3). 

Composited, multi-temporal and Fourier-processed satellite sensor data may be 
used to describe epidemiological data statistically using linear and logistic 
regression techniques[48][49] or various discriminant analysis and maximum 
likelihood approaches.[26][50] Output maps record the similarity of each pixel to 
the satellite-determined environmental characteristics in a sample set of sites 
where the epidemiological situation is well documented (the training set). Such 
maps can record the predicted suitability of each pixel for the presence of a vector 
or disease (Fig. 2 on page 2), or quantitative data related to the burden of disease 
(Fig. 3 on page 2). 

Predictive accuracy can be assessed using a contingency table that compares the 
training set data and the suitability category to which the pixels were assigned. 
From this is calculated the overall percentage of correct predictions, the 
percentage of false positives and false negatives (that is, false predictions of 
presence and absence, respectively), and the sensitivity and specificity (proportion 
of positives or negatives, respectively, correctly identified). The kappa index of 
agreement, k, measures predictive accuracy compared with a null model (that is, 
one with no predictive skill); values vary between 0 (fit no better than random) 
and 1.0 (perfect fit),[28] with a valuse of more than 0.75 regarded as excellent; 
confidence intervals can be attached to k values. Once robust and reliable 
correlations between the satellite and disease data are established, real-time 
monitoring of environmental conditions by satellites can provide valuable inputs 
into disease early-warning systems.[16] 
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