Quantifying range of motion and stress patterns at the transitional lumbosacral junction: Pilot study using a computational model for load-bearing at accessory L5-S1 articulation

Document Type


Publication Date



© International Society for the Advancement of Spine Surgery. Background: Symptomatic or asymptomatic transitional anomalies at the lumbosacral junction are common occurrences in the population. Lumbosacral (L5-S1) accessory articulations are the most common presentations of transitional anomalies at this region. Such anatomical alterations are believed to be associated with biomechanical changes of load-bearing and movement restrictions leading to low back pain. This study attempts to use computational models of a normal and a lumbosacral transitional vertebrae (LSTV) accessory articulation to analyze and compare the range of motion and loading patterns at the lumbosacral articulations. Methods: Three-dimensional Finite Element computational models of normal and accessory L5-S1 articulated sacrum were created. These models were tested for range of motion and stress patterns generated at the lumbosacral articulations using similar loading and motion simulation to elicit different moments/excursions at the lumbosacral junctions. Results: Compared to the normal variant, the transitional model exhibited different range of motion and divergent patterns of stress generation at the lumbosacral and accessory articulations with equal and physiological magnitudes of loading applied to both the models. Conclusions: The finite element modeling approach can be used for biomechanical investigations in LSTV variants. However, larger sample studies with different LSTV models may be required to statistically compare movement and loading patterns at LSTV-affected lumbosacral and sacroiliac junctions, and to recommend definitive treatment strategies in these situations.